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Abstract: Alzheimer’s disease (AD), a neuropsychiatric disorder, continually arises in the elderly.
To date, no targeted medications have been developed for AD. Early and fast diagnosis of AD
plays a pivotal role in identifying potential AD patients, enabling timely medical interventions,
and mitigating disease progression. Computer-aided diagnosis (CAD) becomes possible with the
burgeoning of deep learning. However, the existing CAD models for processing 3D Alzheimer’s
disease images usually have the problems of slow convergence, disappearance of gradient, and
falling into local optimum. This makes the training of 3D diagnosis models need a lot of time, and the
accuracy is often poor. In this paper, a novel 3D aggregated residual network with accelerated mirror
descent optimization is proposed for diagnosing AD. First, a novel unbiased subgradient accelerated
mirror descent (SAMD) optimization algorithm is proposed to speed up diagnosis network training.
By optimizing the nonlinear projection process, our proposed algorithm can avoid the occurrence of
the local optimum in the non-Euclidean distance metric. The most notable aspect is that, to the best
of our knowledge, this is the pioneering attempt to optimize the AD diagnosis training process by
improving the optimization algorithm. Then, we provide a rigorous proof of the SAMD’s convergence,
and the convergence of SAMD is better than any existing gradient descent algorithms. Finally, we use
our proposed SAMD algorithm to train our proposed 3D aggregated residual network architecture
(ARCNN). We employed the ADNI dataset to train ARCNN diagnostic models separately for the
AD vs. NC task and the sMCI vs. pMCI task, followed by testing to evaluate the disease diagnostic
outcomes. The results reveal that the accuracy can be improved in diagnosing AD, and the training
speed can be accelerated. Our proposed method achieves 95.4% accuracy in AD diagnosis and 79.9%
accuracy in MCI diagnosis; the best results contrasted with several state-of-the-art diagnosis methods.
In addition, our proposed SAMD algorithm can save about 19% of the convergence time on average
in the AD diagnosis model compared with the gradient descent algorithms, which is very momentous
in clinic.

Keywords: Alzheimer’s disease; optimization algorithm; mirror descent; CNN; MRI

1. Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative disease, is the most typical
condition of dementia, mainly in the elderly. It affects people’s memory function, thinking
ability, and behavior capability. With the growth of modern life expectancy, the aging
phenomenon is aggravating [1]. So, the prevalence of AD is further rising. According to
the latest research, patients suffering from AD will reach 74.7 million by 2030 [2], with an
average of one person who has AD every three seconds. At present, the etiology of AD
is still unclear in medicine, and there is no effective therapeutic method to prevent the
incidence and development of AD. Most of the new cases are in low- and middle-income
countries. The substantial medical and nursing costs will cause a significant burden to
society [3]. Patients with AD usually have organic brain changes, such as narrowing of
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the gyrus and widening of the sulcus, and especially atrophy of brain tissue, such as the
hippocampus and many lobes [4]. Early diagnosis of AD usually used neuroimaging
data [5]. Many imaging studies [6] have demonstrated that Alzheimer’s patients have
different degrees of hippocampal volume atrophy, the corresponding lateral ventricle
enlargement, and temporal angle enlargement phenomena, which gradually extend to the
cingulate gyrus and neocortical junction with time. Figure 1 shows an example of different
types of magnetic resonance images. In this figure, the left side is the hippocampus of a
normal human brain, and the right side is the pathological hippocampus of an AD patient.
We can see the atrophy of the hippocampus clearly. These abnormalities, easily obtained
by craniocerebral MRI (magnetic resonance imaging), supply essential information for
clinicians to diagnose AD.

Figure 1. An example of different types of magnetic resonance images. The left image is a healthy
person, and the right one is an Alzheimer’s disease patient. The red boxes represent hippocampi.

Moreover, MCI (mild cognitive impairment), a cognitive impairment state between
the change in average random cognitive ability and dementia state, has a high probability
of eventually becoming AD. MCI is split into two subtypes: sMCI (stable MCI) and pMCI
(progress MCI). Patients with sMCI can prevent the development of the disease through
drugs and medical intervention. However, patients with pMCI have a high probability of it
turning into AD within three years [7]. If AD can be diagnosed early, clinicians can find the
probable dementia of patients as soon as possible, carry out drug and medical intervention,
and prevent the deterioration of the disease.

The rapid development of neural network technology makes computer-aided AD
diagnosis possible. More and more researchers [8–10] think about how to use the MRI data
of patients for AD diagnosis. The human brain has many functional areas, so the structure
of MRI is very complex. When neural networks extract features from complex images,
the optimization process is prone to the problems of vanishing gradient [11] and local
optimization [12]. Moreover, the craniocerebral MRI data are three-dimensional matrix
data. In the process of feature extraction of 3D MRI using neural network models, the
training speed of the models is slow, and the accuracy of the diagnosis models is low.

When constructing the 3D MRI CAD model of AD, because data are highly complex,
the neural network model often has slow speed in the feature extraction process. At the
same time, due to the problems of vanishing gradient [11] and local optimal solutions [12]
in the existing optimization algorithms when dealing with complex medical image data,
the accuracy of prediction is often not satisfactory. Thus, accelerating the training speed,
avoiding the disappearance of partial derivatives in the network training process, and
improving accuracy have become challenges of diagnosing AD.

A novel 3D aggregated residual network with subgradient accelerated mirror descent
optimization is proposed to tackle the aforementioned challenges. The main contributions
are as follows:

• We propose SAMD, an unbiased subgradient accelerated mirror descent optimization
algorithm, designed to expedite the training of diagnostic networks. By optimizing
and improving the mirror descent algorithm [13], SAMD avoids the optimization
problem falling into local optimum under the non-Euclidean distance metric. SAMD
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achieves accelerated convergence by introducing the step factor and the deviation
correction factor to the mirror descent algorithm. Furthermore, the incorporation
of a subgradient unbiased estimation mechanism effectively mitigates the issue of
vanishing gradient.

• We propose a 3D aggregated residual network (ARCNN) for feature extraction from
craniocerebral MRI scans to diagnose AD. The ARCNN leverages our proposed
aggregation residual blocks (ARBs) to capture global information within the input data,
enhancing its capability to recognize complex patterns and features while improving
model stability. Experimental results on the ADNI dataset highlight the superior
performance of the diagnostic model trained using the SAMD algorithm in terms of
accuracy and efficiency compared to other state-of-the-art methods.

• Our proposed SAMD algorithm achieves a convergence rate that is a square order
faster than gradient descent algorithms such as Adam and SGD. Experimental results
further validate the efficiency of the SAMD algorithm, showcasing an average time-
saving of approximately 19% compared to gradient descent algorithms in the training
phase. The SAMD algorithm accelerates AD diagnosis model training, overcoming
real-world healthcare computational constraints, ensuring local data security, enabling
continuous updates, and enhancing diagnosis efficiency while complying with privacy
regulations and evolving medical knowledge.

2. Related Work

The vital technology of computer-aided AD diagnosis is to extract neuroimaging
features from patients’ MRIs. Generally, the existing AD diagnosis models are separated
into four types of feature extraction techniques (i.e., voxel, patch, ROI, and whole-image).

Methods based on voxels [14] attempt to recognize AD-related classification mi-
crostructure. Usually, the feature dimension can reach the order of millions, and the
number of images used for model training is relatively small (such as dozens). Those make
the method face the risk of overfitting.

Comparatively, methods based on the region [15] obtained quantitative features by
region segmentation algorithm and then constructed a classifier used to identify patients in
a normal control group. Intuitively, these methods only attended to craniocerebral regions
defined by experience. Therefore, they may not contain all the possible pathological parts
in the cerebrum. Ju et al. [16] used fMRI data to diagnose AD. A brain was divided into
90 regions. According to the Pearson correlation coefficient, the connection of 90 regions is
calculated to form a 90× 90 relation matrix, which is input to the network for diagnosis.

In order to obtain the changes of local brain regions, a patch-based method [17]
used the intermediate scale of feature representation (between the voxel level and region
level) to construct a classifier. However, a key question is determining the number, place,
and proportions of patches in MR images. Therefore, Lian et al. [10] proposed a CNN
(convolutional neural network) to find the voxels with high contrast through statistical
analysis and comparison of ordinary images and AD images, and then extracted patches to
improve the diagnosis effect.

Wang et al. [18] firstly input 3D MRI into DenseNet and then applied ensemble learn-
ing for diagnosis. Cui et al. [19] proposed a diagnostic framework based on CNN and RNN.
This method can use the imaging data of different time points. Fang et al. [20] designed
a neural network framework, taking advantage of 3D CNN and FSBI-LSTM. It was re-
garded as a feature extraction to extract the hidden spatial features to promote performance
further. Ordinary diagnosis networks used convolutional layers to extract features (such
as Resnet [21], Unet [22], etc.), followed by fully connected layers for diagnosis. Because
the fully connected layer only processes the one-dimensional information, it resulted in
information loss. Fang et al. [20] used bidirectional LSTM instead of fully connected lay-
ers to capture spatial information and improve the diagnosis effect. Pan et al. [23] used
GAN to generate missing multimodal data for diagnosis. Precisely, the traditional multi-
modal diagnostic methods discard the subjects without PET (position emission computed
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tomography) data to solve the problem of modal missing. However, this strategy may
significantly reduce training data, thus diminishing the diagnostic performance.

Ji et al. [24] used a deep CNN to diagnose AD, and an effective method was used to
train the model using an unbalanced small dataset. Recently, Zhang et al. [25] proposed
a diagnostic model with embedding feature selection and feature fusion. They proposed
a norm regularization-based optimization algorithm and theoretically demonstrated that
it can converge to a global optimum. Their proposed method achieved 84% accuracy in
diagnosing AD.

In the existing Alzheimer’s diagnosis models, no matter which feature extraction
methods are used for modeling, the optimization algorithms based on gradient descent
are used for model training. These training algorithms have some problems, such as local
optimization, vanishing gradient, and slow training speed. Therefore, we propose a novel
unbiased subgradient accelerated mirror descent optimization algorithm and apply it to
our 3D aggregated residual network diagnosis model. The best we can tell is that it is the
first time to improve the optimization algorithm of the model in Alzheimer’s diagnosis,
which improves the training speed and diagnostic accuracy of the model.

3. Materials and Methods
3.1. Datasets

The data used in our paper were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). Parameters of these MR images are listed in Table 1. 348 subjects are
separated into 4 categories, including AD, NC (normal control), sMCI, and pMCI. In total,
the ADNI dataset contains 78 AD, 100 NC, 117 sMCI, and 53 pMCI subjects.

Table 1. Parameters of our acquired dataset.

Parameters ADNI

Magnetic field intensity 1.5T
Field of view 160

Acquisition matrix 192× 192
Thick of scans 1.2 mm
Manufacturer SIMENS
TE (Echo time) 3.5–3.7 ms

TI (Inversion time) 1000 ms
TR (repetition Time) 3000 ms

Weight T1

3.2. Proposed Method

The whole framework of our proposed diagnostic model is shown in Figure 2. Before
training the diagnosis network, data preprocessing (Section 3.2.1) was performed before
training. Then, we proposed a 3D aggregated residual diagnosis network (Section 3.2.2)
for feature extracting. Our proposed unbiased subgradient accelerated mirror descent
optimization algorithm was used in the training process to obtain a faster training speed
(Section 3.2.3). Our method addresses two binary classification tasks: diagnosing AD vs.
NC and distinguishing sMCI from pMCI. We chose this approach due to clinical relevance;
the AD vs. NC task aids early AD diagnosis, while sMCI vs. pMCI classifies cognitive
impairment degree. It aligns with disease progression trends, avoiding inconsistencies in a
combined model and ensuring meaningful diagnostic insights.

3.2.1. Data Preprocessing

Our dataset comprises numerous subjects, each of which encompasses multiple MR
images captured at various time points. We divide the data classified by subjects into MR
images one by one and complete all the information of MR images at the same time. In
this way, our dataset becomes image-based. The ADNI dataset contains 220 AD, 478 NC,
448 sMCI, and 328 pMCI. By interpolating the original data, every 3D MR image is re-
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shaped into a 256× 256× 256 data cube, which is suitable as an input of our proposed 3D
aggregated residual network.

Figure 2. The framework of our proposed diagnostic model.

3.2.2. Three-Dimensional Aggregated Residual Diagnosis Network

Essentially, CNN is a feature extractor of layer-by-layer learning mode, which can
mine different features from input images. Due to the specific structure of MRI data, specific
neural network architectures are required to adequately capture spatial dependencies and
features in healthy and ill brains. Because the 3D MRI data of AD patients have large
amounts of information, they are often used to deepen or widen the network to enhance
the accuracy of feature extraction. The design is conducive to extracting deeper features
from MRI, to obtain higher accuracy. However, with the increase in hyperparameters (such
as channels, filter size, etc.), the network training cost and design difficulty will greatly
increase. We propose a 3D aggregated residual network architecture to extract features
from MR images, shown in Figure 3.

In Figure 3, conv1(bn) denotes a convolutional layer with batch normalization applied.
Conv2-conv5 are aggregated residual blocks (ARBs) with a unique cardinality mechanism
to realize the sharing of parameters in the network model, shown in Figure 4. ARBs are
designed to aggregate features from multiple preceding layers. This helps the network
capture both low-level and high-level information effectively, enabling the model to learn
intricate patterns and representations. Using ARB structures can increase the model’s accu-
racy without significantly increasing the magnitude of parameters. The hyperparameter C
represents the number of branches in the aggregated feature extraction convolutional layers.
In accordance with the data characteristics and experimental conditions, we set C to 8. GAP
stands for global average pooling, which calculates the average of feature maps, reducing
them to scalar values. This reduces data dimensionality, leading to fewer parameters in
subsequent fully connected layers and lower computational overhead. As GAP computes
the average over all positions, it is spatially invariant, enhancing the model’s ability to
handle features at different positions. FC represents the fully connected layer. Table 2
displays details of the diagnostic network structure, including kernels, number of neurons,
size of input, and output vectors at each layer. ARCNN is designed to extract neuroimaging
features from MRIs, and the network can acquire subtle changes of AD patients’ brain
organs to give better diagnosis results.
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Figure 3. The architecture of our proposed ARCNN. This model achieves two diagnosis tasks so that
it needs to be trained respectively.

Figure 4. The architecture of ARB. k represents the convolutional kernel size, which is a small matrix
used for feature extraction in convolutional operations. p represents the padding size, which is the
technique of adding extra pixels around the input image before convolution to control the output
size. s represents the stride, which determines the step size at which the kernel moves across the
input data.
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Table 2. The topology of our diagnosis network.

Layer Stage Input Size Output

1 conv1 256 × 256 × 256 × 1 7 × 7 × 7 × 64 128 × 128 × 128 × 64

2 max pool 128 × 128 × 128 × 64 — 64 × 64 × 64 × 64

3 conv2 64 × 64 × 64 × 64

 1× 1× 1× 4
3× 3× 3× 4, C = 8

1× 1× 1× 256

× 3 64 × 64 × 64 × 256

4 conv3 64 × 64 × 64 × 256

 1× 1× 1× 8
3× 3× 3× 8, C = 8

1× 1× 1× 512

× 4 32 × 32 × 32 × 512

5 conv4 32 × 32 × 32 × 512

1× 1× 1× 16
3× 3× 3× 16, C = 8

1× 1× 1× 1024

× 6 16 × 16 × 16 × 1024

6 conv5 16 × 16 × 16 × 1024

1× 1× 1× 32
3× 3× 3× 32, C = 8

1× 1× 1× 2048

× 3 8 × 8 × 8 × 2048

7 GAP 8 × 8 × 8 × 2048 — 1 × 1 × 1 × 2048

8 FC1 1 × 2048 — 1 × 512
9 FC2 1 × 512 — 1 × 2

3.2.3. Accelerated Mirror Descent Optimization

Most diagnostic models of AD are usually 2D, and the extracted brain spatial structure
information is insufficient. Therefore, researchers consider using a 3D model for feature ex-
traction. Three-dimensional MRI data contain more features of brain organs, so the training
speed of the 3D neural network model is slow. Moreover, training time is still a problem
that confines the development of neural network models, and more efficient methods are
always sought after. Aiming to accelerate the training speed of the 3D Alzheimer’s disease
diagnostic model, a novel accelerated mirror descent algorithm is proposed to decrease
training time. This subsection will introduce the proposed unbiased subgradient acceler-
ated mirror descent algorithm (SAMD). Before introducing our proposed algorithm, a table
is listed to contain the symbolic representations and definitions used in this subsection, as
shown in Table 3.

Table 3. A notation of symbols and definitions.

Name Meanings

Bm(a, b) Bregman divergence of a and b
m(·) Bregman divergence generating function
θm Strong convex coefficient
L Lipschitz constant
F(x) Cost function
< x, y > Scalar product of x, y
∇F(x) Gradient of F(x)
∂F(x) Subgradient of F(x)
αt Step factor
βt Deviation correction factor
γt Dynamically adjusted factor

Preliminary

Mathematically, Bregman divergence [26] is defined as a method similar to distance
measurement, which extends the square of Euclidean distance to a kind of distance. The
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distance has no trigonometric inequality and symmetry. Bregman divergence Bm(a, b),
with regard to the function m(a), is defined as follows:

Bm(a, b) = m(a)−m(b)− < ∇m(b), a− b > (1)

where < a, b > is the scalar product of a and b. m(·) is a distance generation function.
Assume that m(·) is a strong convex function. Then we have the following inequal-

ity [27]:

m(a) ≥ m(b)+ < ∇m(b), a− b > +
1
2

θm||a− b||2 (2)

where θm is a strong convex coefficient.
According to the knowledge of convex optimization, the Bregman divergence Bm(a, b)

has the following property:

Bm(a, b) ≥ 1
2

θm · ||a− b||2 (3)

SAMD Optimization Algorithm

The traditional gradient descent algorithm is slow when training data are complex. In
the process of optimizing an objective function, the gradient descent algorithm is apt to
converge to the local minimum [28]. Moreover, the gradient depends on derivatives, which
is imprecise due to the nonsmoothness of the objective function. In addition, numerical
schemes need to be used to solve them due to nonsmooth and unknown gradient flows.
These gradient flows must have higher-order derivatives than the second-order derivatives.
Meanwhile, implementing gradient flow is not easy because numerical artifacts will occur
when the derivative is higher than second-order, but the gradient is usually like this.

The optimization objective of the mirror descent algorithm using Bregman divergence
as the mirror map is [13]:

xt+1 = argminx∈Ω{< ∇F(xt), x− xt > +L · Bm(x, xt)} (4)

where L is a Lipschitz constant. x indicates the parameters to be trained and Ω is the search
space of x.

However, for the two items < ∇F(xt), x− xt > and Bm(x, xt), there is only one pa-
rameter L in the projection calculation. In the original mirror descent algorithm (see Equa-
tion (4)), constant L (called Lipschitz constant) is put forward to regulate the proportion of
< ∇F(xt), x− xt > and Bm(x, xt). L is preset as a hyperparameter when the mirror descent
iteration is performed. In the iterative change process, the algorithm cannot dynamically
adjust the influence of < ∇F(xt), x − xt > and Bm(x, xt) on the iterative results accord-
ing to the iterative steps. This makes the mirror descent algorithm look a little inflexible.
Moreover, the single parameter will make the algorithm oscillate in the iterative process,
resulting in the poor effect of the optimization algorithm. So, we use the idea of momentum,
which introduces the step factor αt and the deviation correction factor βt to dynamically
adjust the change speed in the iterative process of the algorithm so that the change of the
process tends to be more stable. In this paper, the optimization objective is changed as:

xt+1 = argminx∈Ω{αt· < h(xt), x− xt > +βt · Bm(x, xt)} (5)

Among them, αt is used to control the change of < ∇F(xt), x− xt >, and βt is used
to control the change of Bm(x, xt). According to the projection calculation process of the
mirror descent algorithm, with iterations, the weights of βt and αt change, which can
accelerate the speed of the optimization algorithm to the optimal solution to a certain
extent. In consideration of the above trends and related knowledge, we set αt =

1
t+1 and

βt =
1

1−λt . βt changes with the number of iterations, and the change rate is greater than αt.
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The mirror descent algorithm is effective when ∇F(xt) can be calculated by a nu-
merical calculation algorithm. However, when the objective function is nonsmooth or the
derivative does not exist, ∇F(xt) can not be calculated. At this point, the gradient descent
algorithms will not work. Therefore, we use the subgradient instead of traditional gradient
in this paper. The subgradient has good performance in solving nondifferentiable convex
optimization problems. The subgradients of function F(x) can be regarded as a cluster of
supported hyperplanes, represented by ∂F(x). Furthermore, the unbiased estimation of the
subgradients E[∂F(x)] is used to replace the gradient so that the results of the numerical
analysis are unique, unbiased, and bounded. To prove this point, we give Theorem 1.

Theorem 1. Given an objective function F(x), for any x ∈ Ω, there exists a real number N > 0
subject to E[∂F(x)] ≤ N.

Proof. F(x) is a finite function in a finite set. That is, it is uniformly bounded. Therefore,
the unbiased estimation of subgradients is also bounded. The mathematical expectation of
a bounded function is bounded. Obviously, ∂F(x) is a bounded function. So, ∀x ∈ Ω, and
there exists a real number N > 0 subject to E[∂F(x)] ≤ N.

Based on some knowledge of mathematical analysis, we can prove Theorem 1. Theo-
rem 1 shows that when we calculate the unbiased estimate of the subgradient of F(x), the
result is bounded. Hence, E[∂F(x)] can avoid the vanishing gradient problem. E[∂F(x)]
can be calculated by the following equation:

E[∂F(xt)] =

{
E(∇F(xt) ) i f F(x) is di f f erentiable
E
(

1
n ∑n

j=1 f j(xt)
)

i f F(x) is nondi f f erentiable
(6)

where f j(xt) is the sampling of the subgradient hyperplane by F(x) at x = xt. By the
following equation, the gradient of F(x) can be replaced by h(x) = E[∂F(x)]. This can
avoid the vanishing gradient problem.

Finally, the iterative weighted average method is used to control the objective function
change further so that the algorithm can achieve the optimal solution faster. We define
xt+1 as the weighted average value in the t + 1 iterative step. It can be calculated by the
following equation:

xt+1 = γt+1 · xt + (1− γt+1) · xt+1 (7)

where xt is the weighted average value in the previous step and xt+1 is calculated by
Equation (5). γt+1 is a dynamically adjusted parameter, which used to adjust the weight
between xt and xt+1 in different iteration steps. γt+1 is determined by accumulating the
reciprocal of inner product term weight of the current step and the previous step. The
accumulation of the reciprocal of inner product term weight at step t is represented by St,
and the calculation method [29] is:

St =
t

∑
i=0

1
αt

(8)

This setting can make the iteration step span of each step of the algorithm less large, and
can achieve the optimal solution more accurately.

The approach is summarized in Algorithm 1.
Algorithm 1 shows our proposed stochastic unbiased subgradient accelerated mirror

descent algorithm. Line 1 gives the initial of the whole algorithm. Lines 3–4 calculate αt and
Bm(x, xt), which are put forward to dynamically regulate the impact of < ∇F(xt), x− xt >
and Bm(x, xt) on the iterative equation (see Line 6). Line 5 calculates our proposed unbiased
subgradient method. Lines 7–8 show our proposed iterative weighted average method.
By using this method, our proposed SAMD algorithm can converge faster and avoid the
error caused by too large a step size. Lines 9–12 are used to evaluate whether the SAMD
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algorithm fulfills the convergence situation. Through iterations, our proposed SAMD
algorithm can train the diagnostic network until it reaches the optimal condition. Then, the
convergence of our proposed SAMD will be analyzed below.

Algorithm 1 A stochastic unbiased subgradient accelerated mirror descent algorithm
Input: Loss function F(x)
Output: The optimization result x∗

1: Initial: t = 0, x0 = argminx∈Ωm(x), obtain λ by grid search
2: while t ≤ n do
3: Calculate αt =

1
t+1

4: Calculate βt =
1

1−λt

5: Calculate h(xt) = E[∂F(xt)]
6: Set xt+1 by xt+1 = argminx∈Ω{αt· < h(xt), x− xt > +βt · Bm(x, xt)}
7: Calculate St = ∑t

i=0
1
αi

, St+1 = ∑t+1
i=0

1
αi

and γt+1 = St
St+1

8: Set xt+1 by xt+1 = γt+1 · xt + (1− γt+1) · xt+1
9: if ||xt+1 − xt|| < ε then

10: Let x∗ = xt+1
11: break
12: end if
13: end while
14: return x∗.

Convergence of SAMD

The following lemma can be obtained according to the properties of strongly convex
functions and Bregman divergence constructed by Bregman function.

Lemma 1. ∀p, q, r ∈ Ω, we have:

Bm(p, r)− Bm(q, r) = Bm(p, q)+ < ∇m(q)−∇m(r), p− q > (9)

where constrained set Ω is a closed convex set.

Proof. According to the definition of Bregman divergence (see in Equation (1)), the follow-
ing three equations can be deduced:

Bm(p, q) = m(p)−m(q)− < ∇m(q), p− q > (10)

Bm(p, r) = m(p)−m(r)− < ∇m(r), p− r > (11)

Bm(q, r) = m(q)−m(r)− < ∇m(r), q− r > (12)

Then, we have the following process by Equation (11) minus Equation (12):

Bm(p, r)− Bm(q, r) = m(p)−m(q)− < ∇m(r), p > + < ∇m(r), q >

= m(p)−m(q)− < ∇m(r), p− q > (13)

By Equation (13) minus Equation (10), we then have

Bm(p, r)− Bm(q, r)− Bm(p, q) =< ∇m(q), p− q > − < ∇m(r), p− q >

=< ∇m(q)−∇m(r), p− q > . (14)

So, we have Bm(p, r)− Bm(q, r) = Bm(p, q)+ < ∇m(q)−∇m(r), p− q >.

This lemma is proved by the property of Bregman divergence and is used to obtain the
convergence of the SAMD algorithm. Based on some knowledge of mathematical analysis,
we can obtain Lemma 2.
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To prove the convergence of the unbiased subgradient accelerated mirror descent
algorithm, the following lemma can be deduced:

Lemma 2. When t ≥ 0, for any q ∈ Ω, we have the follwing inequality:

αt < h(pt), pt − q >≤ βt[Bm(pt, q)− E[Bm(pt+1, q)|δt]] +
(αtN)2

2θm
(15)

where δt is a sigma-field, i.e., δt = {h(p0), h(p1), ..., h(pt)}, h(p) = E[∂F(p)]. Especially,
δ0 = δ{p0}.

Proof. From the first-order necessary condition, we can obtain

< αth(pt) + βt(∇m(pt+1)−∇m(pt)), q− pt+1 >≥ 0 (16)

Then, it can be acquired that

αt < h(pt), pt+1 − q >≤ βt < ∇m(pt+1)−∇m(pt), q− pt+1 > (17)

From Lemma 1, it can be concluded that

< ∇m(pt+1)−∇m(pt), q− pt+1 >= Bm(pt, q)− Bm(pt+1, q)− Bm(pt, qt+1) (18)

Take Equation (18) into Equation (17), and we can obtain

αt < h(pt), pt+1 − q >≤ βt[Bm(pt, q)− Bm(pt+1, q)− Bm(pt, pt+1)] (19)

Bregman divergence has the following property (see in Equations (2) and (3)):

Bm(pt, pt+1) ≥
1
2

θm · ‖pt − pt+1‖2 (20)

Then, Equation (19) can be transformed to

αt < h(pt), pt+1 − q >≤ βt

[
Bm(pt, q)− Bm(pt+1, q)− 1

2
θm‖pt − pt+1‖2

]
(21)

αt < h(pt), pt+1 − q >= αt(< h(pt), pt+1 − pt > + < h(pt), pt − q >)

≥ −
∣∣∣∣< αt · h(pt)√

θm
,
√

θm(pt+1 − pt) >

∣∣∣∣ (22)

The above inequalities are sorted out:

αt < h(pt), pt+1 − q >≥ αt < h(pt), pt − q > −
∣∣∣∣< αth(pt)√

θm
,
√

θm(pt+1 − pt) >

∣∣∣∣ (23)

By using the Fenchel inequality, Equation (23) is transformed to

αt < h(pt), pt+1 − q >≥ αt < h(pt), pt − q > −1
2

(
θm‖pt+1 − pt‖2 +

α2
t

θm
‖h(pt)‖2

∗

)
(24)

The above equation is transformed:

αt < h(pt), pt − q >≤ αt < h(pt), pt+1 − q > +
α2

t
2θm
‖h(pt)‖2

∗ +
θm

2
‖pt+1 − pt‖2 (25)
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Taking Equation (21) into Equation (25), we have

αt < h(pt), pt − q >≤

βt

[
Bm(pt, q)− Bm(pt+1, q)− θm

2
‖pt+1 − pt‖2

]
+

α2
t

2θm
‖h(pt)‖2

∗ +
1
2
‖pt+1 − pt‖2 (26)

According to Algorithm 1, there has βt =
1

1−λt (λ ∈ (0, 1)), so the value range of βt is
βt ∈ (1,+∞). Then, we take conditional expectations on δt:

αt < h(pt), pt − q >≤ βt[Bm(pt, q)− E[Bm(pt+1, q)|δt]] +
(αtN)2

2θm
(27)

From Lemma 2, we can deduce the following theorem to converge our proposed
unbiased subgradient accelerated mirror descent algorithm.

Theorem 2. For an optimization question minp∈ΩF(p), where F(p) is a strong convex function,
pt is the optimal solution obtained by the iterative algorithm, and p∗ is the optimal solution, we have

F(pt)− F(p∗) ≤ N2

2θm(t + 1)
(28)

Proof. In Lemma 2, let q = p∗, and we can obtain

αt < h(pt), pt − p∗ > +βtE[Bm(pt+1, p∗)|δt] ≤ βtBm(pt, p∗) +
α2

t N2

2θm
(29)

By the strong convexity of F(p), we can obtain

αt < h(pt), pt − p∗ >≥ αt[F(pt)− F(p∗)] +
αtθF

2
‖pt − p∗‖2 ≥ αt[F(pt)− F(p∗)] (30)

Take Equation (30) into Equation (29). Divide both sides of the inequality by αt and
calculate the total expectation:

βt

αt
E[Bm(pt+1, p∗)] + E[F(pt)− F(p∗)] ≤ βt

αt
E[Bm(pt, p∗)] +

αtN2

2θm
(31)

Then, we have

E[F(pt)]− F(p∗) ≤ N2

2θm(t + 1)
+

βt

αt
[Bm(pt, p∗)− Bm(pt+1, p∗)] (32)

When the algorithm iterates to pt, we can come to the following conclusion:

F(pt)− F(p∗) ≤ N2

2θm(t + 1)
(33)

According to Theorem 2, our proposed SAMD algorithm can converge at O(1/t), a
square order faster than the gradient descent algorithms (such as Adam and SGD (stochastic
gradient descent), which have O(1/

√
t) convergence). It is proved theoretically that the

SAMD algorithm proposed in our paper can accelerate the convergence of the training
process of the diagnostic network. At the same time, through the relevant description and
theorem-proof of the algorithm, it can be obtained that the SAMD algorithm can avoid the
problems of vanishing gradient and local optimal solution.
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4. Experiments and Discussion

We validate our proposed model on the ADNI dataset. In Section 4.1, we describe
some settings and performance measures. Sections 4.2–4.5 verify the performance of our
proposed model.

4.1. Experimental Settings

Our proposed model is verified on both AD vs. NC task and sMCI vs. pMCI task. The
hardware we utilized consisted of an Intel(R) Core(R) i9-9900K CPU, operating at 3.60 GHz
with 16 cores, 16 GB of RAM, a storage setup comprising a 256 GB SSD and a 2 TB SATA
drive, along with an NVIDIA RTX 2080 Ti GPU equipped with 11 GB of dedicated memory.
This configuration provided the essential computational resources for our experiments.

To assess the performance of our proposed model, we divided the dataset into training,
validation, and testing sets. For each class of data, we employed a split ratio of 7:2:1 for
these three sets. The training set, comprising 70% of the data, was used for model training,
during which the model learned to diagnose diseases by recognizing the features and
labels of the data. The validation set, consisting of 20% of the data, played a crucial role in
monitoring the model’s performance during training and tuning hyperparameters, aiding
in preventing overfitting. The remaining 10% of the data served as the testing set, used
to evaluate the model’s ultimate performance. Importantly, the testing set contained data
that the model had not previously encountered, ensuring the objectivity of the evaluation.
Furthermore, to enhance the evaluation of the model’s performance and generalization
capabilities, we ensured that images of the same subject do not appear in more than one of
the training, validation, and test sets during the dataset partitioning process.

More specifically, four metrics, namely accuracy (ACC), sensitivity (SEN), specificity
(SPE), and area under the curve (AUC, obtained by summing the area under the ROC
curve), are used to evaluate our proposed model’s diagnostic performance, which are the
most commonly occurring in bioinformatics literature [30,31].

4.2. Compared with Other Optimizers

To evaluate the performance of the SAMD optimizer, we train our model and then
test on ADNI in the two tasks of diagnosis. The results of SAMD are compared with other
mainstream optimization methods by using the same diagnostic networks. Hence, Adam
and SGD are chosen as two baselines. Adam, a widely used method in training neural
networks, has proved to be better than many gradient methods. SGD is a well-known
convex optimization method. Table 4 presents the diagnostic performance of our algorithm
in two diagnostic tasks, as compared to other methods, on the testing datasets.

Table 4. Diagnostic performance of two tasks in ADNI dataset.

Methods
AD vs. NC sMCI vs. pMCI

ACC SEN SPE AUC ACC SEN SPE AUC

SGD 0.947 0.972 0.876 0.969 0.779 0.733 0.762 0.787
ADAM 0.951 0.960 0.929 0.967 0.788 0.526 0.854 0.781

SAMD (ours) 0.954 0.901 0.952 0.970 0.799 0.737 0.833 0.789
Note: The bolded values in each column represent the best-performing values for that specific column.

Table 4 shows that the proposed SAMD method has achieved excellent performance
in most evaluation indicators. Primarily, our model can diagnose AD with 95.4% accuracy.
This better performance is due to the proposed SAMD method being an optimizer based
on mirror descent. The proposed method avoids the local optimization and the smoothness
limitation of the cost function by constructing the optimization problem in the dual space.
Therefore, it can reach the optimal value of the model more accurately. These experimental
results also indicate that this model is still effective when the MRI to be diagnosed has
different parameters (such as TE, TR) or the distribution of patients is inhomogeneous.
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Figures 5 and 6 show the training and validation accuracy of different epochs in two
diagnostic tasks. We can obtain that all models are trained to the optimal state from these
figures. It is worth noting that the network architecture which used our proposed SAMD
optimizer can achieve the optimal state in fewer epochs. That is, our proposed method has
a faster convergence speed.

Figure 5. Training and validation accuracy with epochs in AD vs. NC diagnostic task by using
ADNI dataset.

Figure 6. Training and validation accuracy with epochs in sMCI vs. pMCI diagnostic task by using
ADNI dataset.

As shown in these two plots, our proposed SAMD method can achieve higher accuracy
in a shorter time. Our proposed method, SAMD, can converge faster than other algorithms.
Moreover, the model trained by SAMD can achieve higher accuracy eventually. According
to the experimental results, we can believe that our proposed SAMD algorithm is effective
and efficient in optimizing our proposed AD diagnostic network.

In order to better demonstrate the efficacy of the proposed adjustment factors in our
study, we conducted a comparative experiment. Specifically, we established a control group
(referred to as WOBMD) where we set βt in SAMD to 1 (i.e., without considering βt). We
applied WOBMD to train and optimize our diagnostic model ARCNN, and subsequently
compared the diagnostic outcomes and runtime on both tasks with the results obtained
using SAMD, as illustrated in Figure 7. The experimental results reveal that our SAMD
algorithm, featuring two adjustment factors, outperforms the WOBMD algorithm, which
utilizes only a single adjustment factor. This observation underscores the superiority and
innovativeness of our proposed algorithm.

4.3. Performance of Diagnostic Network

In order to assess the performance of the SAMD algorithm when optimizing different
diagnostic networks, a series of comparative experiments were conducted. Specifically,
two widely employed CNN-based networks in the AD diagnosis field, VGGNet [32]
and ResNet [33], were selected for evaluation. SAMD was employed as the optimizer for
training and optimizing these two networks on two different diagnostic tasks. The resulting
diagnostic outcomes are presented in Figure 8.
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Figure 7. Comparative performance of SAMD and WOBMD.

Figure 8. Comparison of diagnostic performance across different diagnostic networks using SAMD
as the optimizer in two diagnostic tasks.

As illustrated in Figure 8, SAMD consistently demonstrated good performance across
three diagnostic models (including VGGNet, ResNet, and our proposed ARCNN), with
particularly superior results observed in the ARCNN model. This observation underscores
the adaptability and effectiveness of the SAMD algorithm in optimizing AD diagnostic
networks. Furthermore, the experimental results revealed that, in comparison to the
two commonly used CNN network architectures, our proposed ARCNN architecture
consistently yielded superior diagnostic performance. This demonstrates the advanced
and superior characteristics of our model. The experiments confirm the efficacy of the
SAMD algorithm in optimizing different diagnostic networks, highlighting its adaptability
and effectiveness in the field of medical image analysis, especially for AD diagnosis.
Additionally, it is evident that our proposed ARCNN model, with its unique ARB structure,
outperforms both ResNet with residual blocks and VGGNet without any special network
structure in both diagnostic tasks. This indicates that our proposed ARCNN diagnostic
network, featuring ARBs, exhibits advanced performance.

To further validate the diagnostic performance of our ARCNN model optimized
using SAMD, we gathered an additional dataset (represented as MRND), including 67 AD,
89 sMCI, 48 pMCI, and 75 NC. Using the model previously trained on ADNI data, we
conducted a performance evaluation with this new MRI dataset, and the results are depicted
in Figure 9.

As observed in the figure, our model continues to exhibit superior performance on the
new MRI data, indicating the robustness and generalizability of our proposed approach.
This outcome underscores the versatility of our method in effectively diagnosing AD across
different datasets and highlights its potential for broader clinical applications. The results
obtained from the evaluation on the new dataset reaffirm the effectiveness of our SAMD-
optimized ARCNN model and its potential for widespread application in AD diagnosis.
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Figure 9. The performance of ARCNN trained with SAMD on MRND.

4.4. Performance of Training Time

The SAMD algorithm is proposed to accelerate the training speed of neural networks.
The training time of two diagnosis tasks is recorded to verify this point. We applied
SAMD, SGD, and Adam optimization to the ARCNN diagnostic model separately and
recorded the training times for both diagnostic tasks, as shown in Figure 10. To ensure
experimental fairness, we maintained identical datasets and experimental settings across
the three different optimization algorithms for ARCNN. In a holistic perspective, the
ARCNN model optimized using our proposed SAMD algorithm exhibited an average
reduction of approximately 19% in training time compared to models optimized using SGD
and Adam when training was completed. The experimental results demonstrate that our
proposed SAMD optimization algorithm is capable of accelerating the training process of
the ARCNN diagnostic network in different diagnostic tasks.

Furthermore, we present the average inference times for two diagnostic tasks con-
ducted using our proposed diagnostic network. For the AD vs. NC task, the average
inference time is 79.5216 ms, while for the sMCI vs. pMCI task, it is 81.3423 ms. It is worth
noting that for a well-trained diagnostic model, the process of disease diagnosis is typically
instantaneous, requiring minimal waiting time. Consequently, when deploying this system
in clinical settings, real-time disease diagnosis can be achieved, facilitating prompt medical
interventions and decisions.

Figure 10. Training time of different optimization algorithms on various tasks.

4.5. Comparison with Previous Work

In Table 5, several SOTA results reported in the literature for AD vs. NC diagnosis
and sMCI vs. pMCI diagnosis using structure MRI data of ADNI have been summarized.
The underlined values are the optimal values in the baseline methods. From this table,
we can see that our proposed method has a more powerful diagnosis capability than the
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existing machine learning-based AD diagnostic methods. It is worth noting that although
many baselines use more data for training than us, our proposed model still achieves the
highest accuracy in the two classification tasks. These results demonstrate that our model
effectively diagnoses different parametric nuclear magnetic scannings. The 3D aggregated
residual diagnosis network has excellent feature extraction ability. The SAMD algorithm
can train the neural network model accurately and efficiently, so our proposed architecture
can obtain great diagnosis results.

Table 5. Comparison with previous work.

Reference Subject
AD vs. NC sMCI vs. pMCI

ACC SEN SPE AUC ACC SEN SPE AUC

Janousova et al. [34] 231 NC + 63 sMCI + 168 pMCI +198 AD 0.880 0.850 0.910 - 0.700 0.640 0.750 -
Liu et al. [35] 77 NC + 85 AD 0.914 0.923 0.904 - - - - -

Korolev et al. [36] 61 NC + 77 sMCI + 43 pMCI + 50 AD 0.800 - - 0.870 0.520 - - 0.520
Karasawa et al. [37] 574 NC + 346 AD 0.940 - - - - - - -

Khvostikov et al. [38] 58 NC + 48 AD 0.854 0.883 0.900 - - - - -
Lin et al. [39] 229 NC + 188 AD 0.799 0.840 0.748 0.861 - - - -
Xu et al. [30] 165 NC + 95 sMCI +126 pMCI + 142 AD 0.904 0.924 0.887 0.954 0.637 0.786 0.454 0.679
Cui et al. [31] 223NC + 231 sMCI + 165 pMCI + 192 AD 0.923 0.906 0.937 0.970 0.750 0.733 0.762 0.777
Zhu et al. [40] 419 NC + 345 AD 0.916 0.874 0.948 0.958 - - - -

Poloni et al. [8] 302 NC + 209 AD 0.826 - - 0.900 - - - -
Alinsaif et al. [9] 50 sMCI +50 pMCI - - - - 0.700 0.600 0.800 -

Lin et al. [41] 308 NC + 233 sMCI +183 pMCI + 362 AD 0.923 0.904 0.944 0.928 0.741 0.750 0.731 0.766
Gao et al. [42] 427 NC + 342 sMCI +234 pMCI + 352 AD 0.920 0.891 0.940 0.956 0.753 0.773 0.741 0.786
Li et al. [43] 153 NC + 151 AD 0.930 0.924 0.948 - - - - -

proposed 100 NC + 117 sMCI + 53 pMCI + 78 AD 0.954 0.901 0.952 0.970 0.799 0.737 0.833 0.789

Note: The bolded values in each column represent the best-performing values for that specific column. The
underlined values indicate the best-performing values in the current column among the baselines.

4.6. Future Research Directions

In this subsection, we discuss future research directions for AD diagnosis models.
Emerging avenues encompass the integration of cutting-edge imaging modalities, such
as the fusion of fMRI and PET with MRI images, to bolster early detection capabilities.
Furthermore, the development of interpretable AI models is poised to enhance diagnostic
transparency, fostering trust within clinical contexts. Additionally, the adoption of early
detection strategies, including biomarker discovery and digital health technologies, holds
the potential to identify AD in its incipient stages.

The future of AD diagnosis hinges on the amalgamation of advanced imaging, the ad-
vancement of interpretable AI models, the realization of early detection, and the prediction
of disease progression. Through continuous research endeavors, achieving more efficient
and accurate AD diagnosis becomes attainable, enabling timely clinical interventions and
treatments, ultimately alleviating societal burdens and enhancing the overall wellbeing
of patients.

5. Conclusions

Computer-aided diagnosis of AD plays a vital role in helping doctors diagnose disease
and find potential patients. We present a novel 3D aggregated residual network with
accelerated mirror descent optimization for diagnosing AD. An unbiased subgradient
accelerated mirror descent optimization algorithm is proposed to accelerate the training
speed of our diagnostic model. The best we can tell is that it is the first work to accelerate the
Alzheimer’s diagnosis process by improving the optimization algorithm of the diagnostic
model. Theoretically, our proposed SAMD optimization algorithm can converge at an
O(1/t) rate. A 3D aggregated residual network is proposed to extract features from 3D
MRI data. The experimental results on the ADNI dataset indicate that our proposed
method can improve diagnosing AD and achieve 95.4% accuracy in AD diagnosis and
79.9% accuracy in MCI diagnosis. Compared with several SOTA diagnosis models, our
proposed model shows excellent performance. In addition, our proposed SAMD algorithm
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can save about 19% of the convergence time on average compared with several gradient
descent algorithms.

We will explore further to improve the disease diagnosis’s efficiency in the future.
Moreover, MRI scans are not performed in many hospitals during AD diagnosis. We may
consider different kinds of medical images for the diagnosis of AD and make the diagnosis
network adaptable for multimodal data.
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